
 

 

 

Methods for Modelers of Science 

Aydin Mohseni 

Abstract. Recent advancements in philosophical and metascientific research are 
increasingly reliant on the use of models to enhance our understanding of 
scientific processes. This trend is underpinned by the implicit assumption that 
modeling is a crucial tool in these fields. However, the effectiveness of these 
models varies significantly. We critically examine two recent, notable case studies 
of scientific modeling, along with their respective discussions in scholarly 
literature. Our analysis focuses on identifying the challenges and key principles 
derived from these case studies that are relevant to the practice of modeling in 
science. Building upon this analysis, we propose a set of best practices aimed at 
refining the approach to modeling for philosophers and metascientists. 

 

 

 

1 Introduction 

This chapter is written for philosophers of science and metascientists interested in modeling 

science; those for whom target of analysis is the social and epistemic structures and processes 

involved in the production and dissemination of scientific findings. For such folk, this chapter 

can serve as part guide to the hidden curriculum of modeling, and part discussion piece for 

thinking through some of the challenges and best practices involved in this sort of work. 

Models can be used to understand and improve science. Something like this claim implicitly 

motivates much recent modeling work both in philosophy of science and in metascience.1 But this 

can be done more or less successfully. What are the ways that we, as modelers, might do this 

better? What information should we share, and what norms should we subscribe to? 

In the first half of this chapter, we review two recent case studies of scientific modeling, and 

their discussion in the literature. In the second half of the chapter, I explore the puzzles and 

 
1 For recent examples of models of science see Arvan et al. (forthcoming), Heesen (2023), Zollman (2018), Mohseni et 
al. (2023), Weatherall et al. (2020), Weatherall and O’Connor (2021), Heesen and Romeijn (2019), Heesen (2018a), 
Grimes et al. (2017), Holman and Bruner (2017), and Smaldino and McElreath (2016). For a survey of models of 
scientific communities see O’Connor (2023).  
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principles these studies suggest for the practice of modeling science. Along with this, I present 

some modeling proposals for methodological norms and best practices.   

Nearly all the insights I will present were transmitted to me through mentoring, discussion, 

and co-learning from others in the community of modelers in philosophy of science. They are 

part of the hidden curriculum for modelers. Though, of course, I have my own take on them. My 

hope in sharing these is to make them more broadly accessible, and for you to improve on them. 

The first case study is on work presented in Ioannidis (2005) and involves a model of the 

production of scientific findings which has been used to understand the impacts of methodological 

bias on the replication rates and reliability of published findings and has figured prominently in 

debates regarding the merits of proposals for changing scientific practice. 

The second case study is on work presented in Zollman (2007) and involves a model of the 

communication of scientific findings across social networks which has been used to investigate 

the impact of the structure of social networks on the incidence of premature lock-in to false 

consensus; both theoretically and in the analysis of historical episodes. 

In both cases, models are used to explain some phenomenon of interest in science, and each 

points to some previously underappreciated epistemic dynamic. The explanatory burdens they 

take on, however, are instructively distinct. In the former case, a how-probably explanation is 

provided for the reliability of certain research findings; in the latter case, a how-possibly 

explanation is proffered for certain cases of premature lock-in to false consensus.3 

Much recent work in modeling science follows the formulas illustrated by our case studies. 

Typically, the phenomenon to be explained is motivated by some episode in the history of science. 

The model sets up conditions that reproduce something like the phenomenon of interest, such as 

low study reliability or premature lock-in to consensus. Within the model, the causes of the 

phenomenon can then be identified, such as base rates and bias or relative rates of information 

sharing. From this, a potential explanation is proffered for the phenomena of interest. 

From the causal relations identified within the model, we are invited to make some sort of 

inductive inference regarding causal relations in real-world scientific activity. The inference can 

be modest, suggesting the causes identified merely as candidate hypotheses, that is, as possibly 

at play in the real world; which is still worthwhile in so far as they were not previously imagined 

as such. For how-probably explanations, the inference is characteristically stronger, suggesting 

the causes identified are ‘likely’ attributable in part or in whole. In Bayesian terms, one might 

think of the distinction between adding an element to the set of hypotheses of some boundedly 

rational agent versus producing a compelling likelihood ratio for a hypothesis and its negation. 

A key challenge of this sort of modeling is to understand what, if anything, should be learned 

from a model. We use the following case studies for examples in trying to address this question. 

 

2  The filter model of science 

 
3 For discussion of how-possibly, how-probably, and how-actually explanations, see Resnik 
(1991), and Dunja Šešelja (2023). 
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Ioannidis (2005) popularized what might be called the filter model of science in his article, 

“Why most published research findings are false.” In it, he anticipated the high replication failure 

rates that would be discovered in the replication crisis in the social and biomedical sciences.5 

 
Figure 1. A visualization of an instance of the filter model of science where a population with 

fraction φ true initial hypotheses are submitted to tests with given type I and type II error rates, given 

by α and β, respectively, and where only statistically significant findings are ultimately published. 

 

2.1 The model. Science might be conceived of as a process of filtration. (See Figure 1.) At 

first, researchers in a field or sub-field of science begin with the set of hypotheses they can 

formulate. These are the predictions of their theory, past studies, hunches, and common sense. 

These hypotheses are then put to test. Some pass these tests or acquire compelling evidence in 

their favor and others do not. Those that make it through this filter are submitted to the next one: 

journals, conferences proceedings, textbooks, and the annals of scientific knowledge. The 

products of this filtration process are the finding of a field at a time. 

This process can be made mathematically precise. On doing this, one might ask clear questions 

about the relationship between various research practices, protocols, and paradigms and the 

properties of the scientific literature they produce. 

Properties of the literature might include: the fraction of statistically significant hypotheses 

that turn out to be false, i.e., the false discovery rate; the fraction of non-significant hypotheses 

that turn out to be true, i.e., the false omission rate; the expected ratio of exaggeration of reported 

effect sizes to true effect sizes, i.e., the magnitude exaggerations ratio; or the expected impact 

study outcomes will have on important decisions, i.e., the decision-relevant informativeness of 

studies. 

In this model, we can represent many proposals for remedial intervention. For example: the 

proposal to publish null results address the bottom filter (see Figure 1); 

 

 
5 For philosophical examinations of social and epistemic issues involved in the replication crisis see: Romero (2019, 
2020); Romero and Sprenger (2020); Heesen (2018b); Bruner and Holman (2019); Bright (2017); Bird (2020); Devezer 
et al. (2019); Baumgaertner et al. (2019); and Machery (2020). 
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Figure 2. Estimates of the positive predictive power (PPV) of various types research findings for 

various combinations of power (1 − β), ratio of true to not-true relationships (R), and methodological 

bias (u). Reprinted from Ioannidis (2005). 

 

proposals to limit researcher degrees of freedom via preregistration, lower the conventional 

threshold for statistical significance, and increase study power address the middle filter; and 

proposals to improve theory address the initial filter representing the set of hypotheses formulated 

by a field at a time. 

 

2.2 Initial inferences from the model. Ioannidis (2005) used the filter model to explain and 

estimate the positive predictive value (PPV) of various types of studies as a function of their pre-

study odds (R), the type I error (α) and statistical power (1 − β) of their tests, along with their 

methodological bias (u). 

As the PPV of a population of studies corresponds to the expected the fraction of statistically 

significant findings that are true, it provides an estimate of the rate of successful replication of 

study findings for a given type of study. So, for example, for adequately powered randomized 

control trials with good pre-study odds (1:1), decent power (1 − β = .8), and little bias (u = .1), 

the PPV is .85.6 In other words, one should expect 85% of statistically significant results to be 

true and so successfully replicated under rigorous testing. (See Figure 2, row 1.) In contrast, for 

discovery-oriented exploratory research with massive testing (e.g., certain GWAS studies) which 

exhibit low pre-study odds (1:1,000), low power (1 = β = .2), and high bias (u = .2), one should 

expect 0.15% of statistically significant results to be true and hence replicable. 

In this way, Ioannidis illustrates how methodological bias and the error rates of studies, in 

tandem with different base rates of true hypotheses should be expected to affect the positive 

predictive value, and hence the replication rates, of published study findings. 

 
6 We are assuming a conventional significance threshold of α = .05 for these examples. 
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Figure 3. Three network configurations, illustrated here with six agents each. Reprinted from 

Zollman (2007). 

 

2.3 Subsequent applications & critical response. There have been several subsequent 

applications of the Ioannidis (2005) filter model of science. Maniadis et al. (2014) uses the filter 

model to argue that the number of researchers investigating a topic should be expected to increase 

the false discovery rate of the new published research findings, and apply this insight to question 

to estimate the replicability of studies on anchoring effects. Crane (2018) and, earlier, Williams 

(2019) use adaptations of the filter model to argue that proposals to lower the convention 

threshold of statistical significance from .05 to .005 may produce unintended consequences, in 

particular, increasing the false discovery rate of new published research findings. These results 

serve as part of a back-and-forth on whether to change, keep, or eliminate the significance 

threshold. 7  Mohseni (2023) uses an adaptation of the filter model to argue that the research 

practice of HARKing, or hypothesizing after results are known, is misunderstood, and that a 

correct explanation of HARKing identifies its interaction with researcher judgement and the 

prevalence of true hypotheses in the relevant population of hypotheses under test. 

 

3 The bandit model of science 

Zollman (2007) first introduced the bandit model to philosophy of science. Using it, he 

explores the dynamics and reliability of epistemic communities–communities of learners, such as 

scientists–as they relate to the structures of communication of their social networks. 

 

3.1 The model. Every action involves trade-offs; learning is no different. The bandit model8 is 

perhaps the simplest interesting, formal expression of this fact. When combined with social 

networks, it can be used to explore certain epistemic and pragmatic trade-offs in the context of 

collective inquiry. 

 

 
7 Cf. Benjamin et al. (2018), Ioannidis (2018), Machery (2019), and Lakens et al. (2018) 
8 The name come from the fact that slot machines, a mechanical instantiating of stochastic payoffs, are also known as 

“one-armed bandits”. 
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Figure 4. The Zollman effect: less connected networks can converge more reliably to the truth. 

Reprinted from Zollman (2007). 

 

In its simplest form, the bandit model is composed of a decision problem with two possible 

actions: one better, one worse. However, the agent faces a problem: they do not yet know which 

action is better, and so must choose between exploring actions in order to better identify which is 

better (the ‘explore’ option) or focusing on the action they currently estimate to be better (the 

‘exploit’ option). Hence, the game presents an explore-exploit tradeoff. 

The basic idea can be adapted for modeling scientific inquiry. Consider a community of agents 

which might represent individual researchers or research labs–any unit that can choose to engage 

in running experiments to perform and thereby test of one several actions. The actions might be 

thought of as the choice of which medical treatment to administer, scientific theory to test, or 

research program to develop. The agents are related to one another by social relations, represented 

by edges on a network where with as agents, which indicates with whom each agent shares 

information (See Figure 3). 

 

3.2 Initial inferences from the model. Zollman (2007) used the bandit model on networks to 

explain how less communication across a network of researchers might, counter-intuitively, 

produce more reliable consensus on the truth. 

The historical episode used to motivate the model is that of the abandonment of the hypothesis 

of bacterial origins of peptic ulcer disease from the mid 1950s until the 1980s where further 

evidence revealed it to be true. In that case, a version of the history (Radomski et al., 2021) is that 

one research group disseminated finding that convinced the broader research community that 

bacterial origins were unlikely, and so gave up on that line of research. 

In the bandit model of science, premature lock-in to false consensus occurs when the 

community as a whole is sufficiently confident that one action is better than the other that all 

members of the network cease investigating the ostensibly worse option. 

A community can lower the rate of premature consensus by having some researchers continue 

to research the apparently less promising actions. One way this is achieved is to prevent research 



Aydin Mohseni 

7 

results from being universally shared so that different researchers will continue to have different 

assessments, at least for some time.9 

This is the heart of the Zollman effect: less-connected networks of researcher are one way to 

preserve a diversity of opinions for longer, and so better hedge against premature lock-in to false 

consensus.10 

 

3.3 Subsequent applications & critical response. A primary theme of subsequent research on 

the model regards the question of robustness. Rosenstock et al. (2017) show that the Zollman 

effect obtains for a subset of the space of possible parameter values for the model, specifically 

where the success rates of the two actions are sufficiently similar, the population size is 

sufficiently small, and the amount of data collected in each round of play is sufficiently small. 

Borg et al. (2019) show that the Zollman effect does not obtain when certain substantial 

assumptions of the original bandit model are altered: when taking an action improves it future 

success rates, when researchers exhibit inertia in updating, when researchers can ‘criticize’ each 

other in a particular way, and when researchers consider both actions as equally good when their 

success rates are sufficiently similar but not identical. Radomski et al. (2021) question whether 

the Zollman effect explains the historical episode of peptic ulcer disease on the basis of textual 

analysis that suggest that the bacterial hypothesis had already been abandoned before the 

publication of the results that were supposed to have cause the premature abandonment of the 

hypothesis. 

 

4 Discussion and Best Practices 

With the preceding cases in hand, we consider the nature of inference from models of science 

and propose best practices that might be adopted by future modelers of science. 

4.1 Inferences from models. The analysis of a model can: suggest a novel hypothesis; 

demonstrate a possibility; clarify the implications of some line of reasoning; or, generally, shift 

our credences over the set of hypotheses under consideration.11 Ultimately, the aim is to license 

some inference and influence the credal state of our reader regarding the nature of the scientific 

enterprise. 

Getting clear on the nature of the model-world relation is hard. A compelling account of the 

nature of inference from idealized models is sketched in Robert Sugden’s work on credible worlds 

(Sugden 2000, p. 1; 2009, p. 26. Sugden argues that models can be thought to describe 

counterfactual worlds, and that the gap between the model worlds and the real world is bridged 

via inductive inference. That is, modeling results can support a sort of inductive inference over 

possible worlds. In so far as a result holds under a breadth of assumptions in idealized world 

described by our models, we might think it more likely that the result my hold of the actual world. 

 
9 Of course, this comes at the cost of a trade-off with the rate at which the community converges to consensus. 
10 Later research has explored other ways that this diversity of opinions can be maintained Zollman (2012, 2013) , such 
as via the intransigence of some researchers (Zollman 2010; Wu and O’Connor 2023) (Holman and Bruner 2015), or 
variation in theoretical values between researchers (Zollman 2018). 

11 For the Bayesian angle–who already has all relevant hypotheses in her set of her hypotheses and has worked through 
their implications–it is perhaps all a shifting of credences. 



Methods For Modelers of Science 

8 

In philosophy, Weisberg (2013) and Mayo-Wilson and Zollman (2021) present rich accounts of 

the role and epistemology of modeling. 

Against the backdrop of this picture, one can ask, “What can be learned from this model?” 

Whatever the answer, we should get as clear as we can on this fact for ourselves and also for our 

readers. Whether the answer is “we learn some phenomenon might arise in some way that was 

not previously appreciated” or “it is genuinely unclear what we learn, if anything”, the ideal is 

that we understand and communicate as clearly as is in our power.12 

To this end, I list a set of proposals for modeling epistemic communities in science. These 

proposals are certainly not original to me. Rather, they are the result of numerous conversations 

with other modelers of science over years. That said, I will inevitably have my own take on the 

recommendations. 

Some of the proposed best practices, such as robustness analysis, are tacitly assumed and 

broadly practiced, if imperfectly. They are a part of the hidden curriculum of becoming a modeler. 

Others, such as explicitly stating the empirical assumptions and implications of our models are 

widely acknowledged as salutary, but more rarely practiced. All should be broadly known and 

discussed. 

 

4.2 The model/result distinction. An important distinction is that between a result derived from 

a model versus the model itself. These can be conflated,13 and are worth distinguishing. The model 

itself is just the formal, computational, or even physical structure being analyzed. On its own, a 

model does not constitute a result. A result is constituted by the analysis of a specific set of 

instantiations of the model. 

Recall our cases from §2 and §3: the filter model and bandit model of science. Let us examine 

this distinction in the context of those cases. The articles first presenting those models considered 

specific results derived from them.  

In the first case, we were shown that, within a model of scientific production, under certain 

conditions,15 we should expect the low replicability rates of published study findings. Here, we 

can ask distinct questions about the model in general—e.g., whether the behavior of the process 

of scientific production in general is well-captured by a linear filtration process as in Figure 1—

and about a specific result—e.g., whether mean methodological bias of discovery-oriented 

exploratory research with massive testing close to the 0.8 number assumed for the 0.001 PPV 

result in Table Figure 2. 

In the second case, we were shown that, within a model of social learning, under certain 

conditions16 less-connected epistemic networks were more reliable. Here, we can ask of the model, 

as in Frey and Šešelja (2020), whether the assumption of the model of fixed success rates 

throughout inquiry is apt. Or we could ask of the result that lower connectivity leading to higher 

reliability, as in Rosenstock et al. (2017), what the range is of parameter values of the model for 

which the result obtains. 

 
12 For skeptical discussions of the nature of modeling inference, see Šešelja (2019) and Thicke 

(2020). 
13 Indeed, I am guilty of this. 
15 When base rates of true alternative hypotheses are low, bias is high, and there is substantial publication bias.  
16 When the difference in success rates between actions was sufficiently small, the amount of data collected per round 
sufficiently small, and the population sufficiently small. 
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The distinction indicates four distinct failure modes to consider. Commonly, both a model and 

its results may not be apt for a given target system. However, it may be that a model may be 

generally apt for a target system, but that a specific result derived from that model may not, e.g., 

because the result is non-robust within the model.17 It is even possible that a result may be apt for 

a target system, while the model in which it is produced is generally not, e.g., because the model 

is apt for the system only within the limited regime of parameters where the result happens to 

obtain. To notice these distinct failure modes, we need to distinguish a model and its results. 

4.3. Robustness analysis. In writing up our models, we should provide an analysis of 

reasonable expectations for each of what might be called the internal and external predictive 

validity of the model.18 

Internal validity pertains to a result-model relation. Characteristically this involves 

demonstrating the parametric robustness and structural stability of a given result drawn from a 

model, where the parametric robustness of a result is the range of parameter values within the 

model under which the result obtains, and the dynamical robustness of the result is determined 

by whether the result obtains under perturbation of the underlying dynamics themselves.19 20 

In the case of the bandit model of science, each Rosenstock et al. (2017) and Frey and Šešelja 

(2020) can be seeing as exploring the parametric and dynamical robustness of the Zollman (2007) 

results, respectively. The former investigates the range of parameters within the model—like the 

quantity of data collected by researchers—under which the Zollman obtains, while the latter 

examines changes to the dynamical rules of the model—like the fixed difficulty of inquiry—

under which the Zollman effect obtains. And in the case of the filter model of science, part of 

Machery’s (2020) criticism can be understood as questioning the parametric stability of the 

backfire result in Crane (2018)—does the backfire effect in the model obtain for realistic values 

of p-hacking? 

External validity applies to the model-world relation. This involves identifying the relation of 

the various aspects of the model and potential real-world target systems, and discussing the 

conditions under which the assumptions regarding these representational relationships should be 

expected to support or undermine the predictive validity of the model. 

At present, with a few notable exceptions, 22  the modeling work of philosophers of science 

rarely involves experimental testing to determine the external validity of our models.  By far the 

best critical analysis regarding the lack of empirical corroboration of formal models in philosophy 

of science thus far is to be found in Machery (2023). 

 

 
17 See Frey and Šešelja (2018) for a discussion of robustness in agent-based models of science. 
18 The terms proposed here are loosely analogous their counterparts in the design of empirical experiments. There, the 
internal validity of an experiment is a notion of how well the experiment is setup to measure and control for the desired 
empirical variables, and external validity of an experiment is a notion of how well the study findings can be generalized 
to contexts outside of the experimental setup. 
19 For excellent discussions of robustness under a range of dynamics see Skyrms (2000) and (Sandholm 2010, chs. 7, 8, 
and 12). 
20 For a result unifying several evolutionary dynamics, including the replicator equations and Lotka–Volterra equations, 
see Page and Nowak (2002). For the mean-field relationship between the replicator equations and reinforcement 
learning see Benaïm and Weibull (2003). For the relationship between the replicator equations and Bayesian inference 
see Harper (2010). 

22 For recent exceptions see: Bruner et al. (2018), Mohseni et al. (2021), and Dorst (2023). See Rubin et al. (2019) for a 
resource for experiment design particularly suited for modelers in philosophy. 
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4.4 Proofs vs. simulations. The analysis of models proceeds via proof or simulation. Proofs 

can often license characteristically stronger, deductive inferences about model behavior, but can 

be less informative or practically impossible. Simulations can provide information about systems 

where proof may be difficult, but typically license characteristically weaker, inductive inferences 

about model behavior. 

Strength of inference about model behavior equates to neither to the strength of inference about 

a target system nor the import of one’s results. That said, in doing interdisciplinary work, it can 

be helpful to know differences in disciplinary expectations regarding publishable work. It is 

important to know that in some disciplines, like microeconomics, deductive proofs may be 

expected for publication, while in other fields, like sociology, well-done simulation studies can 

suffice. 

A common project workflow for modelers involves going back and forth between both 

methods of analysis. The following order of operations is illustrative: brainstorm and write out a 

model capturing some core idea; construct a computational version of the model in one’s 

preferred language (e.g., NetLogo, Python, R, Wolfram Language); explore the behavior of the 

model using simulations; simulation results suggest that a pattern of interest probably holds over 

a range of conditions; attempt to prove analytic results showing the pattern definitely holds under 

precise conditions. And repeat. 

 

4.5 Choices of agents. Models of science can contain an array of agents: researchers, reviewers, 

laboratories, regulatory bodies, corporations, and the public. When producing a model including 

such agents, we are confronted with the question of how best to mathematically represent them 

(Smaldino, 2023). 

The choice is not an easy one and can be confusing to those unfamiliar with the range of 

options. Bluntly put, there no perfect choices; there is no simple set of equations that accurately 

capture human behavior across a breadth of conditions. Complex statistical and machine learning 

models can achieve greater predictive accuracy, but they do so at the cost of the simplicity 

required for legible explanations. The types of models we will typically be using achieve some 

semblance of simplicity but do so at the cost of quantitatively accurate predictions. 

Ideal Bayesian agent. An ideal Bayesian agent model is constituted as follows: she has 

probability functions over an algebra of possibilities which encodes her beliefs about her learning 

situation, and she learns propositions by conditioning on them via Bayes’ rule; she has a utility 

function which encodes her choice behavior and she acts by choosing a strategy which maximizes 

her expected utility; her beliefs are closed under deduction in the sense that they she knows the 

logical relations between the elements of her algebra. She assigns utilities every outcome she 

might encounter and probabilities to every proposition she can conceive. Typically, she is also 

committed to epistemic principles such as the requirement of total evidence and possibly to some 

version of the principal principle. 

As a model of scientists, the ideal Bayesian agent is unrealistically rational, computationally 

demanding, sometimes intractable, and so is more seldom the chosen model for agents. Instead, 

one chooses one of her more bounded cousins.24 

 
24 Cf. Simon (1957). 
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Bounded Bayesian agents: The Bounded Bayesian agent is the most common formalism used 

for modeling scientists. The reason is that, however imperfect, she finds herself between the 

implausibly complex ideal Bayesian agent and other implausibly simple agents, such as naive 

imitation or reinforcement learners.  

There are three main ways to an agents may be bounded: by having her decision rule deviate 

from expected-utility maximization; by restricting her utility model; by have her learning rule 

deviate from Bayesian conditioning; or by restricting her representation of her learning situation. 

In Zollman (2007), agents are bounded primarily by the choice of a particularly simple utility 

function. Agents are rational in the sense that each chooses the action that maximizes her expected 

utility but are myopic in so far as each has utilities only over the next round of play. This is 

equivalent to setting the agent’s discount factor for future rounds of play to zero.25 

Two alternative decision rules are: noisy best response, which introduce some probability of 

error into actions; and logit choice model (R. D. 1959), which allows the modeling of a range of 

behaviors from classical best response to replicator dynamics to randomness by varying a single 

parameter. 

The agents are all also rational in the sense that each learns via Bayes rule. However, since 

they only care about maximizing the expected value of their next action, this dramatically 

simplifies the representation of their beliefs, as strategies over indefinite time horizons need not 

be considered. 

In other network models of science, where agents share signals or evidence with one another,26 

agents may not take signals at face value, and may entertain second-order considerations over the 

information they are receiving. Note that essentially no models have fully sophisticated Bayesian 

agents who entertain hypotheses over how other agents’ signals may have been influenced by 

each of their potential histories of interactions over the entire course of play. 

Imitation learning agents. Imitation is perhaps the fundamental form of social learning, and a 

keystone of human cultural evolution (Boyd and Richerson 1988). Imitation learners are modeled 

as choosing strategies by their observed success in others. Imitation dynamics can capture the 

expected qualitative dynamics of large populations in certain cases, and so can be appropriate in 

modeling the transmission of scientific norms and behaviors.27  Note that with many imitation 

dynamics, such as the replicator equations, it is not the agent that is being modeled, but rather a 

population composed of a distribution of strategies, behaviors, or traits. For canonical treatments 

of imitation dynamics, see Schuster and Sigmund (1983), Hofbauer and Sigmund (1998). 

Reinforcement learning agents. Some form of reinforcement learning is perhaps the oldest and 

most ubiquitous form of learning in the tree of life.28 Its form is simple, and combines belief and 

action into one: a reinforcement learner begins with a probabilistic disposition to take one of 

finitely-many actions, and upon taking an action and observing its payoff, she reinforces her 

disposition to take that action in the future in proportion to the payoff received. 29  Note that 

 
25 Fully Bayesian solutions for non-zero discount factors are known and can be computed for simple bandit problems. 
These solutions are given by a Gittins index (Gittins 1979). However, no such solutions are known, in generality, for 
bandit problems played by multiple agents sharing information via social networks. 

26 Cf. Mohseni and Williams (2021), Weatherall and O’Connor (2018). 
27 For example, in Smaldino and McElreath (2016), and Grimes et al. (2017). 
28 Cf. Erev and Roth (1998). 
29 See (Huttegger 2017, ch. 2) for more on bounded rationality and learning. 
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reinforcement learning provides both a model for belief and for action–the agent has probabilistic 

dispositions to act, and these are modified through success and failure. While some degree of 

reinforcement learning is almost always at play in human learning, it is typically too primitive to 

serve as the model encompassing researcher belief and action. 

These are a set of key dynamics, but there are more (see Sandholm 2010). The upshot remains: 

we tend to think that humans are in some sense ‘between’ Bayesian angels and primitive imitation 

and reinforcement learners. Whatever your choice of agent, and however it is bounded, it is worth 

thinking carefully about how your choices should affect the inferences you draw from your model. 

 

4.6 The virtue of adapting established models vs. developing new ones. A common mistake 

for new modelers is to reinvent the wheel. Often, the reinvention is inferior to extant models in 

the literature which have stood the test of time. This is not to say that one should never create 

entirely new models. This can be an important contribution. However, new modeling work 

benefits from understanding the modeling work that has come before. 

There are other virtues in adapting existing models. Adapting an existing model will help other 

researchers familiar with the relevant literature to better understand one’s results–its import, 

internal validity, and implications, generally. Additionally, adapting existing models that have 

been tested experimentally means that the experimental validity of one’s model is better 

understood.30 

An all-too-common failure mode of modeling work is to deploy a bespoke model with no clear 

relationship to any existing literature, containing quantities that are meaningless, 31  with 

assumptions that are not fully understood or spelt out, and so to produce results whose 

implications are opaque. 

 

4.7 The interpretation of variables and meaningfulness. Every modeler should have a working 

understanding of what the numbers used in their models mean. The study of the meaning of such 

numbers is called measurement theory (Krantz et al. 1971). Are the measures involved invariant 

under positive affine transformations, such that they can be thought of as on an interval scale? Or 

merely under scalar transformations, such that they are on a ratio scale? Does the zero point mean 

anything? Are there meaningful comparisons between the quantities within the model? What, if 

any, are the mappings of the quantities in a model to structures in the world? 

There are practical implications of these questions. for example, in game theory, if one is 

interpreting the payoffs of a game in terms of the utilities of a rational agent (which, in decision 

frameworks such as that of Savage (1954) are invariant under positive affine transformation) it 

will yield different results and allow different transformations 32  than if the payoffs are to be 

interpreted in terms of the fitness of some type in the evolutionary context33  (which, in finite 

population models such as the Moran process cannot be negative and may not even be invariant 

under scalar transformations). 

 

 
30 I am reminded by Adrian Curie of another key failure mode: contributing to a cottage industry consisting of trivial 
tweaks to existing models. 
31 In the measurement-theoretic sense of meaningfulness discussed in §4.7. 
32 For a review of decision frameworks and their properties, see Fishburn (1981). 
33 Cf. Rubin et al. (2019) for analysis of the implications of various fitness representations.  
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4.8 Making assumptions & implications clear. We typically require that scholars situate their 

model within the literature. This helps the reader to understand the state of knowledge on the 

relevant question and to situate the paper in relation to that state of knowledge. It also helps the 

subject-area expert in to assess the background knowledge of the author(s) regarding the state of 

knowledge and their own contribution. 

Similarly, we should require that, as modelers, we lay out our modeling assumptions and vet 

them against extant empirical literature. This will help the reader to understand if and when key 

assumptions are plausibly satisfied; and when they are not. 

We should also make the implications of our models clear. In particular, we should indicate 

what further evidence would increase or decrease our credences in the applicability of our 

modeling results. 

Just as we have methods sections in experimental papers, a reasonable proposal is that 

modeling papers in philosophy of science include ‘assumptions’ and ‘implications’ sections as 

standard elements. The inclusion of these sections as standard in our papers can remind us to 

think clearly and deeply about these topics, share what we are thinking with the reader, facilitate 

understanding of the inferential warrant of our results, and enable criticism of assumptions and 

inferences. 

 

As new modelers, you will define the norms of our field. Define them through your rigorous 

research standards, discerning reviews, engaged discussions with colleagues, and thoughtful 

teaching and mentorship practices. I'm hopeful you'll refine and champion proposals that improve 

on those sketched here, enriching the broader community of modelers in the philosophy of 

science.34  
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