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Abstract. The replicator dynamics and Moran process are the main deter-

ministic and stochastic models of evolutionary game theory. These models

are connected by a mean-field relationship—the former describes the expected

behavior of the latter. However, there are conditions under which their predic-

tions diverge. I demonstrate that the divergence between their predictions is

a function of standard techniques used in their analysis, and of differences in

the idealizations involved in each. My analysis reveals problems for stochastic

stability analysis in a broad class of games. I also demonstrate a novel domain

of agreement between the dynamics, and draw a broader methodological moral

for evolutionary modeling.

1. Introduction

The replicator dynamics (Taylor and Jonker 1978) and frequency-dependent

Moran process (Moran 1962) are the main deterministic and stochastic dynam-

ics of evolutionary game theory (Cressman and Tao 2014; Garćıa and Traulsen

2012). Both dynamics capture the basic idea that phenotypes that are more fit

than the population average tend to grow in proportion, while phenotypes less fit

than average tend to shrink in proportion. The replicator dynamics gives us a de-

terministic description of the behavior of evolution, assumes infinite populations,

and isolates the influence of selection. The Moran process gives us a stochastic

description of evolution, assumes finite populations, and introduces the effects of

drift.

Importantly, the two dynamics are connected by a mean-field relationship (Benäım

and Weibull 2003, 2009). Intuitively, the replicator dynamics describes the ex-

pected behavior of the Moran process for large populations over finite stretches

of time.1

Date: September 3, 2019.
1The replicator dynamics also provides a mean field for other dynamics, such as reinforce-

ment learning (Benäım and Weibull 2003), and emerges from distinct revision protocols, includ-
ing pairwise proportional imitation, imitation driven by dissatisfaction, and imitation of success
(Sandholm 2009, Ch.5.4).
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A B

A 1 2
B 2 1

Table 1. A 2× 2 symmetric anti-coordination game.

Yet, there exists a striking puzzle: employing standard methods of analysis,

the two dynamics can make contradictory predictions (Sandholm 2009, Ch.12).

When the interactions within a population are modeled by an anti-coordination

game, or game containing an anti-coordination subgame, the replicator dynamics

may predict that selection will favor polymorphism,2 but it is said that the Moran

process shows that such polymorphisms cannot persist in the long run (Taylor

et al. 2004; Novak 2007). I examine this puzzle, and show that its standard

explanation is not quite right. I demonstrate that, even in the long run, there

are a range of conditions under which the Moran process sustains polymorphism.

Under conditions I characterize the long run behavior of the Moran process will

realign with the predictions of the replicator dynamics.

The misunderstanding of the behavior of the Moran process stems from a short-

coming in a standard technique of analysis: stochastic stability analysis. And the

shortcoming of stochastic stability results from its assumption of vanishing muta-

tion rates. My results indicate problems for stochastic stability in a broad class

of games, reveal a novel domain of agreement between the two dynamics, and

suggest a methodological moral for evolutionary modeling.

To understand our motivating puzzle, we can consider the simple anti-coordination

game given in Table 1, and examine the predictions as to the evolutionary

outcomes of its corresponding population game under each dynamics. For both

dynamics let us assume: large populations, random pair-wise interactions, true

breeding, the absence of mutation, and infinite-horizon play. Under the replica-

tor dynamics, the prediction is that, from most all initial conditions, evolution

will deliver the population to the polymorphic state x = 1/2,3 where A-types and

B-types coexist in equal proportions. In contrast, for the same anti-coordination

game, the Moran process predicts that evolution will deliver the population, with

2Polymorphisms, here, are population states in which multiple phenotypes are present. They
are contrasted with monomorphisms, in which only a single type is present.

3For the replicator dynamics, these will be asymptotically stable states. These will be ex-
plained in §2.1.
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equal probability, to one of the two monomorphic states x = 0 or x = 1,4 where

the population is composed entirely of either A-types or B-types. The evolu-

tionary outcome that is a moral certainty in one model is an impossibility in the

other.

Such a divergence in the predictions of the two dynamics leads naturally to the

following questions: How are we deriving the predictions of each dynamics? And

what is the cause of their divergence?5

The standard explanation for divergence in such cases is that the dynamics differ

in the time-horizons of their predictions: the replicator dynamics approximates

the short-to-medium run behavior of evolution, while the the Moran process can

capture its long run behavior (Taylor et al. 2004; Novak 2007). The prediction of

the replicator dynamics is polymorphism, and this correct for the short-to-medium

run. The prediction of the Moran process is monorphism, and this is correct

for the long run. Young (1998, 47) states this clearly: “While [the replicator

dynamics] may be a reasonable approximation of the short run (or even medium

run) behavior of the process, however, it may be a very poor indicator of the long

run behavior of the process.”

The dynamics differ with respect to the time-horizons of their predictions. This

is true, but in the case of interest, this is not the cause of the divergence in their

predictions, and it is not the answer to our puzzle. The cause of the divergence lies

in the standard technique employed to derive predictions from the Moran process,

stochastic stability analysis, introduced to game theory by Foster & Young (1993).

Under conditions I will characterize, stochastic stability leads to the mis-prediction

of homogeneity where long run diversity is to be expected.

Why does this matter? In brief, because the technique of stochastic stability

analysis is ubiquitous. Among those having deployed stochastic stability in the

analysis of the Moran process, and related processes,6 include: Binmore & Samuel-

son (1995; 1997), Fudenberg & Imhof (2004; 2006), Fudenberg et al (2006), Imhof

et al (2006), Nowak et al (2004; 2007), Ohtsuki et al (2007), Sandholm (2007;

2009; 2010; 2012), Taylor et al (2004), Trauelsen & Hauert (2010), and Young

(1993; 1998; 2005; 2015). Evolutionary game theorists use stochastic stability

analysis to explore and explain various phenomena in the domains of cultural and

4For the Moran process, these will be either absorbing states or stochastically stable states,
depending on the presence of mutation. These will be explained in §2.2 and §2.3.

5Another important—and open—question is: how, generally, should we meaningfully com-
pare the predictions of stochastic and deterministic dynamics?

6These include the closely related Markov processes of Fermi and Wright-Fisher.
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A B

A a b
B c d

Table 2. A 2× 2 symmetric game

biological evolution, ranging from the diffusion of innovations to the emergence of

conventions. Stochastic stability is a standard tool in both theoretical and applied

work. Given this, understanding its limitations is important.

The structure of this paper is as follows. In §2, I will introduce the replicator

dynamics and Moran process models along with the concepts of asymptotic stabil-

ity, replacement probabilities, and stochastic stability needed to understand our

results. In §3, I will demonstrate the conditions under which stochastic stability

will mis-predict the long run behavior of the Moran process, polymorphisms will

persist, and the behavior of the replicator dynamics and Moran process will re-

align. In §4, I will discuss real-world applications where one can expect my results

will matter, and suggest a methodological moral for evolutionary modeling. In

§6, I conclude.

2. The Dynamics

2.1. The Replicator Dynamics. The replicator dynamics is the “first and most

important model of evolutionary game theory” (Cressman and Tao 2014, 1081).

This is due to the fact that it allows us to isolate the qualitative influence of

selection on evolution, unperturbed by the complicating factors of mutation, drift,

recombination, and so on. The leading idea behind the replicator dynamics is

that types that are more fit than the population average fitness grow in relative

proportion, and types that are less fit than average shrink in proportion. This

can be described by a system of differential equations7

ẋi = xi[u(i, x)− u(x, x)] for i ∈ S

where S is the set of possible types, ẋi denotes the rate of change of the population

proportion of type i, xi denotes the population proportion of type i, u(i, x) denotes

7The Replicator dynamics can also be formulated for discrete time—the Maynard-Smith
formulation (1982)—by a system of difference equations, which, under some conditions, yield
subtly different results from their continuous time counterpart (Cressman 2003). However, for
2 × 2 games, the qualitative predictions of the two formulations coincide. Thus, here, without
loss of generality, I will work with the continuous time formulation exclusively.
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Game Type Payoffs Phase Portrait Asymptotically Stable States

A dominates B
a > c
b > d

A B All-A state

Bi-stable case
a > c
b < d

A B
All-A and All-B states, with basins

of attraction divided at d−b
d+a−c−b A-types

Polymorphic case
a < c
b > d

A B A mixed state, with b−d
b+c−a−d A-types

B dominates A
a < c
b < d

A B All-B state

Neutral case
a = c
b = d

A B None

Table 3. 2 × 2 symmetric games under the replicator dynamics.
Opaque circles denote asymptotically stable states, empty circles
denote unstable fixed points, dotted lines denote sets of unstable
fixed points, and arrows indicate the direction of selection.

the expected fitness for type i from interacting with the population, and u(x, x)

denotes the population average fitness.

We derive predictions from the replicator dynamics by finding the asymptoti-

cally stable states of the dynamics for a given game, and equating these with the

plausible outcomes of evolution for that game.8 A population state is asymptot-

ically stable just in case it is both stable and attracting. Intuitively, a state is

stable if states near it remain near it, and attracting if states near it tend toward

it. This gives us our prediction of the behavior of a process described by the

replicator dynamics.

For the simple class of 2×2 symmetric games under the replicator dynamics, five

qualitatively distinct outcomes are possible. These can bee seen in Table 3. Our

puzzle concerns the class of anti-coordination games, shown in the third row of the

table, and labeled the ‘polymorphic case’. This is where we find polymorphisms

that are asymptotically stable under the replicator dynamics. Anti-coordination

games constitute and important class of interaction structures, and have been

8Asymptotic stability does not exhaust the plausible outcomes of the replicator dynamics.
In more complex games, disequilibrium behavior such as cycles and strange attractors, along
with sets of collectively but not individually stable states, will not be asymptotically stable but
may still constitute plausible outcomes of the dynamics. For a survey and analysis of this issue,
see (Mohseni 2017). However, for the class of 2 × 2 symmetric games considered here, there
is a one-to-one correspondence between evolutionarily significant outcomes and asymptotically
stable states. So, we can proceed comfortably with asymptotic stability as our stability concept
for the replicator dynamics.
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used in explanations of ritualized animal conflict (Maynard Smith 1974), sex ratios

(Hamilton 1967), and bargaining norms (Skyrms 1996).

We derive the prediction of the replicator dynamics for anti-coordination games

(Table 3, third row) as follows. We solve for the fixed points of the dynamics,

where the rate of change in population proportions of each type is zero, i.e.,

ẋ1 = ẋ2 = 0. This yields three states: the two monomorphic states composed

entirely of one type or the other, and a polymorphic state, i.e., {0, b−d
b+c−a−d , 1}. We

assess the stability of these states by examination of the eigenvalues of Jacobian

matrix for the dynamics, which reveals that only the mixed state is asymptotically

stable. Given this, we know that a population starting at the polymorphism with

proportion b−d
b+c−a−d A-types will remain there, and that, from most all initial

conditions,9 the dynamics will converge to the polymorphism.

2.2. The Frequency-Dependent Moran Process. The Moran process is a

birth-death process in which, for each time step, two individuals are chosen: one

for reproduction and the other for elimination. The individual chosen for birth

is determined, probabilistically, by the relative fitness of the types within the

population, and the individual chosen for death is selected at random. So, if we

consider a population of N individuals whose payoff from interaction are described

by Table 2, then the fitnesses fi, gi of the types A, B can be described as

functions of the number i of A-types,

fi = 1− w + w
a(i− 1) + b(N − i)

N − 1
and gi = 1− w + w

ci+ d(N − i− 1)

N − 1
,

where w denotes the intensity of selection, or the game’s contribution to the net

fitness of the organism. Observe that w = 1 implies that an individual’s fitness is

entirely determined by her interactions in this game, and w = 0 implies that the

game makes no contribution to her fitness.

Individuals reproduce at a rate proportional to their fitness. The rate of re-

production then for A -types is ifi and for B-types is (N − i)gi. Each period,

one offspring is chosen at random to enter the population. So, the probability of

adding an A-type offspring is ifi
ifi+(N−i)gi , and the probability of adding a B-type

offspring is (N−i)gi
ifi+(N−i)gi . After reproduction, one individual is chosen at random

to be removed from the population, so that with probability i
N

an A-type is re-

moved, and with probability N−i
N

a B-type is removed. This makes it so that the

population size remains constant.

9Initial conditions in which some proportion of each type is present in the population.



STOCHASTIC STABILITY AND DISAGREEMENTS BETWEEN DYNAMICS 7

Formally, we define the Moran process with population size N as a Markov

process {XN
t } over the finite state space χ = {1, . . . , N} of possible population

states, with transition probabilities between states given by

Pi,j =



N − i
N

ifi

ifi + (N − i)gi
, if j = i+ 1

i

N

(N − i)gi
ifi + (N − i)gi

, if j = i− 1

1− Pi,i+1 − Pi,i−1, if j = i

0, otherwise,

which composes a tri-diagonal matrix. Note that P0,0 = PN,N = 1, so that the

process has two absorbing states, i = 0 and i = N , and that all other states are

transient. An absorbing state is a state that, once visited by the process, is never

escaped. A transient state then is one which will only be visited a finite number

of times before the process arrives at some absorbing state. Note that, in the limit

of time, with probability one, the process will reach one or the other absorbing

state.

For the simple class of 2×2 symmetric games under the Moran process, as with

the replicator dynamics, we can examine five distinct cases (Table 4) when the

population size is large.10 For each case, the outcomes are described in terms of

the relative probability of arrival of the process at each of the absorbing states.

In particular, we compare the probability of a single mutant coming to replace

the incumbent type, and take over the population. This yields the replacement

probabilities11 ρAB and ρBA, where ρAB denotes the probability of a single A-type

individual leading to the takeover of an otherwise B-type population, and ρBA

denotes the probabilities of the inverse process. The replacement probabilities

of types are compared to those of a neutral mutant (where a = b = c = d),

which will come to fixation with probability 1/N . We say that selection favors a

type if its replacement probability is greater than that of a neutral mutant, and

that selection opposes a type if its replacements probability is less than that of a

neutral mutant.

We derive the predictions of the Moran process for anti-coordination games

(Table 4, third row) by calculating th replacement probabilities for each type.

10We take the large population limit for the Moran process to allow for meaningful comparison
with the replicator dynamics. For analysis of the changes in the behavior of the Moran process
as a function of population size see (Taylor et al. 2004).

11For an exposition of the details of this approach, see (Nowak et al. 2004).
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Game Type Payoffs Replacement Probabilities Description

A dominates B
a > c
b > d

ρBA < 1
N < ρAB Selection opposes B and favors A.

Bi-stable case
a > c
b < d

Not ( 1
N < ρBA, ρAB)

Selection may favor A or B,
but not both.

Polymorphic case
a < c
b > d

Not (ρBA, ρAB < 1
N )

Selection may oppose A or B,
but not both.

B dominates A
a < c
b < d

ρAB < 1
N < ρBA Selection opposes A and favors B.

Neutral case
a = c
b = d

Not ( 1
N < ρBA, ρAB),

or ρBA = ρAB = 1
N

Selection favors A or B depending on
the sign of (a+ b)− (c+ d),
or is neutral if a+ c = b+ d.

Table 4. 2 × 2 symmetric games under the Moran process with
large populations.

This yields three possibilities: ρBA < 1
N

< ρAB, ρAB < 1
N

< ρBA, or 1
N

<

ρAB, ρAB. That is, either selection favors one type replacing the other, or it favors

both replacing one another.12 What we see is that, for anti-coordination games,

selection must favor at least one type in coming to dominate the population. In

the absence of mutation, polymorphism is temporary, and evolution inevitably

attains homogeneity.

2.3. The Frequency-Dependent Moran Process with Mutation. With the

introduction of mutation the behavior of the Moran process changes qualitatively.

Absorbing states disappear, and there is positive probability that the process will

transit within finite time from any given state to any other. Thus, in the limit

of time, the process visits each state infinitely often. Since absorption will not

occur, replacement probabilities are no longer appropriate, and a different method

of analyzing the behavior of the process is needed. This method is to find the long

run distribution of time spent by the process over the possible population states.

Formally, we define the Moran process with population size N and mutation

rate η as an ergodic process13 {XN,η
t } over the finite state space χ = {1, . . . , N},

12In such cases, one can examine the sign of ρAB − ρBA to determine which type is more or
less favored by selection.

13An ergodic process is a Markov process that is both irreducible (every state is reachable
from any other), and aperiodic (the greatest common divisor for the number of steps to return
to each state is one). It is easily verified that the Moran process with mutation is indeed ergodic.
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Game Type Payoffs Stochastically Stable States Description

A dominates B
a > c
b > d

µA → 1
The stationary distribution is a point-mass

at the all-A state.

Bi-stable case
a > c
b < d

µA → 1 xor µB → 1
The stationary distribution is a point-mass

at either the all-A or all-B state.

Polymorphic case
a < c
b > d

µA → 1 xor µB → 1
The stationary distribution is a point-mass

at either the all-A or all-B state.

B dominates A
a < c
b < d

µB → 1
The stationary distribution is a point-mass

at the all-B state.

Neutral case
a = c
b = d

µA → 1 xor µB → 1
xor µA, µB → 1

2

The stationary distribution is a point-mass
at all-A or all-B depending on the sign of

(a+ b)− (c+ d), or evenly split
between the states if a+ c = b+ d.

Table 5. 2 × 2 symmetric games under the Moran process with
mutation and large populations.

with transition probabilities given by

P̂i,j =



(1− η)
N − i
N

ifi

ifi + (N − i)gi
+ η

N − i
N

(N − i)gi
ifi + (N − i)gi

, if j = i+ 1

(1− η)
i

N

(N − i)gi
ifi + (N − i)gi

+ η
i

N

ifi

ifi + (N − i)gi
, if j = i− 1

1− P̂i,i+1 − P̂i,i−1, if j = i

0, otherwise

where P̂0,0 = P̂N,N = 1 − η. Note the mutation terms. What they capture is

that, most of the time (1− η), selection behaves as normal, but in a minority of

instances η, an offspring that was to be an A-type will become a B-type, and vice

versa.14

Now, to understand the long term behavior of the Moran process we can com-

pute its stationary distribution which captures proportion of time spent at each

population state. Formally, a probability distribution µ ∈ Rχ is a stationary

distribution of the ergodic process {XN,η
t } if∑

i∈χ

µiPi,j = µ, for all j ∈ χ.

14Here, we have assumed that mutation is symmetric, but it need not be so. Asymmetric
mutation can be accounted for by formulating the rate of mutation for one type as a ratio of the
other rη, where r is a positive constant. For an analysis of the affects of asymmetric mutation
rates see (Traulsen and Hauert 2010).
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That is, a stationary distribution is a probability vector such that taking its

product with the matrix of transition probabilities simply returns itself.

We know that such a distribution exists, since every ergodic process has a

unique stationary distribution, and that it is history independent. That is, from

any initial distribution over states, the distribution of time spent by the process

over population states converges to that given by stationary distribution.

Typically, however, we do not derive predictions from the Moran process by

finding its stationary distribution. This is due to the fact that general analytic

forms of the stationary distribution for the Moran process for complex games are

not known,15 and because the stationary distribution applies positive probability

to every state, as opposed to yielding unique predictions (Harper and Fryer 2016).

Instead, the drive for analytic tractability and unique equilibrium prediction

motivates the use an alternative: stochastically stability analysis. Stochastically

stable states are just those that retain mass in the stationary distribution when

we take the limit as mutation approaches zero.16 Formally, a state i ∈ χ is

stochastically stable if

lim
η→0

µN,ηi > 0.

We saw that, for the Moran process, in the absence of mutation, all and only

monomorphic states were absorbing states. Now, with vanishing mutation, the

stationary distribution collapses (typically) to a point-mass on just one of these

absorbing states. As mutation vanishes, the behavior of the ergodic process ap-

proaches that of the absorbing chain, and so spends most of its time near one or

another monomorphic state.

We derive the predictions of the Moran process with mutation for anti-coordination

games (Table 5, third row) by finding which states retain positive mass in sta-

tionary distribution as mutation vanishes.17 This yields two possibilities: µA → 1,

or µB → 1.18 That is, either the all-A or all-B state, but not both, can be stochas-

tically stable. Once again, polymorphism cannot be selected.

15The exceptions to this are for 2 × 2 games under arbitrary revision protocols, and for
potential games under exponential revision protocols (Sandholm 2009).

16Stochastic stability is often solved for using particular well-chosen graphs that capture the
difficulty of transitioning from each absorbing state (of the original absorbing chain) to any
other. For a presentation of the relevant techniques, see Ch. 3.2 of Young (1998). I present a
more general formulation better suited to my project.

17See (Fudenberg and Imhof 2004) for the relevant technique.
18In the knife-edge case where a = d and b = c we get µA, µb → 1/2.
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3. The Long Run Persistence of Diversity

Why can’t stochastically stable states be polymorphisms? This is by construc-

tion: a stochastically stable state of an ergodic process will be an absorbing state

of its corresponding absorbing chain. Stochastic stability is defined for an ergodic

process, and is determined by identifying the states that retain mass in the sta-

tionary distribution of the process as mutation vanishes. As mutation vanishes,

the behavior of the ergodic process approaches that of the absorbing chain. Poly-

morphisms cannot be absorbing states, and thus cannot be stochastically stable.

In most game types, the qualitative predictions of asymptotic stability for the

replicator dynamics and the predictions of stochastic stability for the Moran pro-

cess are in basic agreement (see Tables 3, 4, 5). In the case of coordination

games and dominating strategy games (rows 1, 2, 4), for large populations, the

asymptotically stable state with the largest basin of attraction has the greatest

replacement probability and is uniquely stochastically stable. Predictions differ in

the in the polymorphic case (compare row 3 of Tables 3, 4, 5), and the neutral

case (compare row 5 of Tables 3, 4, 5). The latter is to be expected, as the repli-

cator dynamics explicitly abstracts away from the effects of drift. Disagreement

about the polymorphic case is more puzzling. For an anti-coordination game,

polymorphism is uniquely asymptotically stable under the replicator dynamics,

but only monomorphic states can be stochastically stable under the Moran pro-

cess.

The standard explanation we have seen accounts for this divergence in pre-

dictions by positing that the replicator dynamics fails to capture the long run

behavior of the Moran process. The Moran process will, due to stochasticity,

eventually arrive at an absorbing state of the process, where it will spend most

of its time, trapped by low mutation rates. The following excerpt from Sandholm

(2009, 208) tells this story:

“The stochastic process typically moves in the direction indicated by

the mean dynamic. If the process begins in the basin of attraction of

a rest point or other attractor of this dynamic, then the initial period

of evolution generally results in convergence to and lingering near this

locally stable set. . . . However, [since the process is irreducible] this can-

not be the end of the story. Indeed, the process eventually reaches all

states, and in fact visits all states infinitely often. This means that the

process must leave the basin of the stable set visited first; it then enters
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A B

A 1 3
B 2 1

Table 6. A 2× 2 anti-coordination game.

the basin of a new stable set, at which point it is extremely likely to

head directly to the set itself. The evolution of the process continues in

this fashion, with long periods near each attractor punctuated by sudden

jumps between them.”

Young (1998, 20) calls this the “punctuated equilibrium effect,” echoing that,

“When the stochastic shocks are small, the mode of this frequency distribution [the

stationary distribution] will tend to be close to the stochastically stable [states]

predicted by the theory.”

But this characterization turns out to be insufficient for the polymorphic case.

How small must the mutation rate be? And what role do population size and

intensity of selection play? In anti-coordination games under the Moran process,

the population may indeed spend the majority of its time at or near a poly-

morphic equilbrium, even in the long run. This occurs when there is small but

non-vanishing mutation, and sufficiently large population size and intensity of

selection.

To illustrate the potential divergence of the actual and predicted behaviors of

the Moran process, consider the anti-coordination game given by Table 6. We

fix the following parameter settings: population size N = 100, mutation rate

η = 0.01, and intensity of selection w = 0.2. Now, consider the predictions of

each of our stability concepts: The replacement probabilities are ρAB ≈ 0.1644

and ρBA ≈ 0, so selection favors A and opposes B; absorption into the all-A state

is the most probable outcome of the process. Stochastic stability analysis yields

that µA = 1, so all-A is the unique stochastically stable state; in the long run, the

process will spend almost all of its time near the all-A state. Finally, asymptotic

stability analysis yields the unique asymptotically stable state x∗ = 2/3; from all

mixed initial conditions the population will converge to a polymorphism where

2/3 of the population are A-types and 1/3 are B-types.
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Figure 1. The stationary distribution for the Moran process with:
population size N = 100, mutation rate η = 0.01, and intensity
of selection w = 0.2. The vertical line marks the mode of the
distribution.

To see whether these predictions hold up, I analytically derive the actual long

run behavior of the Moran process by calculating its stationary distribution,19

without vanishing mutation, but rather with fixed parameter values of mutation

rate.

This stationary distribution is plotted in Figure 1. Notice that the mode

of the stationary distribution is at the state where there are 67 A-types in the

100-individual population. The process spends the most time precisely at the

polymorphic state predicted by asymptotic stability under the replicator dynam-

ics, and not at the all-A state that is stochastically stable.

To get a feel for the medium run behavior of the Moran process, we can simu-

late several dozen individual population trajectories, starting from random initial

conditions, and evolving over a thousand birth-death events. This is plotted in

Figure 2. Again, it is clear that asymptotic stability under the replicator dy-

namics gives us a more accurate prediction of the behavior of the Moran process.

19In the simple case of 2 × 2 games, we can obtain an explicit formula for the stationary

distribution: µk = µ0

∏k
i=1

P̂i−1,i

P̂i,i−1
for k ∈ {1, . . . , N}, and µ0 =

(∑N
k=1

∏k
i=1

P̂i−1,i

P̂i,i−1

)
, where

the empty product equals one. This can also be verified, computationally, using the Chapman-
Kolmogorov equation, P t = (P )t, which says that the nth-step transition matrix for a Markov
process is equal to the first-step transition matrix raised to the nth power. For very large t, this
can be used to approximate the stationary distribution of a given Markov process (Karlin and
Taylor 2012).
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Figure 2. Plot of 35 population trajectories for the Moran process
over 1000 birth-death events. The horizontal bar corresponds to the
peak of the stationary distribution.

What we see is stochastic stability mis-predicting the actual behavior of the

Moran process under particular conditions. But we want a more general char-

acterization of when this will occur. To obtain this, we turn first to the case

where there is no selection w = 0. Here, I use the detailed balance conditions of

ergodic processes (Karlin and Taylor 2012) to deduce when the mass of the sta-

tionary distribution will be increasing toward the center of the state space. That

is, the conditions under which the peak of the stationary distribution will be at a

polymorphic state. This is captured by the following lemma.

Lemma 1. For any 2 × 2 game under the Moran process, in the absence of

selection w = 0, the strong mutation condition η(N + 2) > 1 is necessary and

sufficient for the mode of the stationary distribution to be a polymorphic state,

and any polymorphic mode will be at the midpoint of the state space.

What I am calling the ‘strong mutation condition’ corresponds to when the

expected number of mutants entering a population in N + 2 birth-death events

is greater than 1. Intuitively, here strong mutation gives us when either the

population is sufficiently large such that the process rarely arrives at monomorphic

states, or the mutation rate is sufficiently high such that, when the population

does arrive at monomorphic states, it does not spend too much time there.

Note that strong mutation is both necessary and sufficient for the stationary

distribution to exhibit a polymorphic peak (Figure 3). That is, just when η(N +

2) > 1, the stationary distribution is concave, and climbs gradually toward its
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(a) η(N + 2) > 1
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Figure 3. In the absence of selection pressures w = 0, satisfaction
of the strong mutation condition η(N+1) > 1 determines the shape
of the stationary distribution.

peak near the middle point N+1
2

from either side of the state space (Figure 3a).

When η(N + 2) = 1, the stationary distribution is uniform (Figure 3b). When

η(N + 2) < 1, the stationary distribution is convex, and climbs outward from its

nadir near the middle point toward its peaks at the monomorphic states 0 and N

(Figure 3c).

We can use this insight as we turn to consider the case of nonzero intensity

of selection w > 0. Consider the dynamics of an anti-coordination game char-

acterized by the payoffs a < c and b > d. It may be intuitive that, when the

stationary distribution is already increasing in mass toward a polymorphic state,

the addition of selection pressure toward an interior equilibrium will continue to

produce an interior mode. This is the essential insight from which I will derive

my main result.

Before doing so, however, there are two stipulations that need to be made. First,

I follow Taylor et al. (2004) in requiring that a coordination game, characterized

by a < c and b > d, further satisfy the condition that b−d > a−d
N

> a−c for finite

populations. This is because, for finite populations, the qualitative dynamics

of a game can be affected by the anti-correlation produced by individuals not

interacting with themselves. Anti-correlation can alter the qualitative dynamics

of the game. Indeed, in sufficiently small populations, each of our four game types

can, in principle, be transformed into a different game.

To see why this is so, consider the case with a population composed of two

individuals N = 2. Here, the process has three possible population states: two



16 AYDIN MOHSENI

A-types, two B-types, and one of each type. Since transition out of each monomor-

phic state occurs solely via mutation, only the state where there is one of each

type involves selection. In this state, only the difference of the values in the off-

diagonal of the payoff matrix, b − c, matters. If b − c > 0, then A dominates

B. If b − c < 0, then B dominates A. The game is no longer, qualitatively, an

anti-coordination game.

To correct for this, we require that payoffs further satisfy b− d > a−d
N

> a− c,
ensuring that the game retains the qualitative dynamics of anti-coordination.20

When N grows large, this condition is easily satisfied, and the qualitative dynam-

ics are once again determined by the signs of the differences of the values of the

column vectors, a− c and b− d, just as with the replicator dynamics.

Second, I must also stipulate that mutation rates be reasonable: η < 1/2. It

should be clear why this is so. If it is more probable that birth events are produced

by mutation than by selection, then the fitnesses of the types will be reversed,

and we will once again be playing a different game; a coordination game, in fact.

With these two stipulations in hand, we can turn to a sufficient condition for

the persistence of diversity of types under the Moran process.

Theorem 1. For any 2× 2 symmetric anti-coordination game under the Moran

process a < c, b > d, and b − d > a−d
N

> a − c, for any intensity of selection

w > 0 and mutation η < 1/2, when the strong mutation condition η(N + 2) > 1

is satisfied, the mode of the stationary distribution will be at a polymorphic state

located between the critical point i∗ = N(b−d)+d−a
b+c−a−d and the midpoint of the state

space N+1
2

.

What we have is that, when the strong mutation condition is satisfied, the

peak of the stationary distribution is guaranteed to be between the midpoint

of the state space and a critical point i∗ = N(b−d)+d−a
b+c−a−d that rapidly approaches

the asymptotically stable state of the same game under the replicator dynamics

x∗ = b−d
b+c−a−d as N grows large.21

What remains is for us to confirm that, as intensity of selection increases, the

peak of the stationary distribution will move toward the critical point. We can

answer this in the affirmative.

20See (Taylor et al. 2004) for a characterization of qualitative dynamics of finite games.
21This is clear when we state the critical point in terms of a population proportion i∗

N =
b−d+

(d−a)
N

b+c−a−d .
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Corollary 1. For any 2× 2 symmetric anti-coordination game under the Moran

process a < c, b > d, and b − d > a−d
N

> a − c, for any mutation η < 1/2, when

the strong mutation condition η(N + 2) > 1 is satisfied, for any intensities of

selection w,w′ such that 0 < w < w′ < 1, the stationary distribution under w′

puts more mass on the states nearest the critical point i∗ = N(b−d)+d−a
b+c−a−d than does

the stationary distribution under w.

This is good. I note, however, that strong mutation provides sufficient, and not

necessary, conditions for a polymorphic mode of the stationary distribution. An

anti-coordination games can fail to satisfy the strong mutation condition, but have

it so that a peak of its stationary distribution is at a polymorphic state. Strong

mutation ensures that the stationary distribution increases monotonically toward

some interior equilibrium, and thus ensures that there are no other peaks at the

monomorphic states. For anti-coordination games where η(N + 2) is slightly less

than one, but where selection pressure is great a� c or b� d, the highest peak

of the stationary distribution may still be a polymorphic state, with other smaller

peaks at the monomorphic states.

In sum, when strong mutation obtains for an anti-coordination game, we know—

with certainty—that stochastic stability analysis will mis-predict a monomorphic

outcome when polymorphism is to be expected. But, when strong mutation does

not obtain, there is still the possibility of mis-prediction.

To get an idea of the conditions under which games will exhibit polymorphic

modes near the replicator dynamics prediction, we can examine the peak of the

stationary distribution of a representative anti-coordination game (Table 6) for

different values of N, η, and w.

In Figure 4, the darkness of each point in a plot encodes the distance, in terms of

population proportions, between the peak of the stationary distribution, and the

replicator dynamics prediction. In the plots, population sizes N ∈ {2, 3, . . . , 100}
vary along the x-axes, mutation rates η ∈ {0, 0.01, . . . , 0.5} vary along the y-axes,

and intensities of selection w ∈ {10−2, 10−1, 1} vary between plots.

This accords with what we have learned so far, and illustrates our results.

Where strong mutation obtains (in the space above the black curves), the peak of

the stationary distribution is near the replicator dynamics prediction x∗. When

the intensity of selection is low w = 10−2, the demarcation is quite precise. As

intensity of selection increases w = 10−1, a growing range of population sizes and

mutation rates (just beneath the black curves) will be compatible with an interior

mode near x∗. When intensity of selection is at its maximum w = 1, strong
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Figure 4. Distances of the mode of the stationary distribution
from the replicator dynamics prediction for different values of
N, η, w. The curve in black corresponds to η(N + 1) = 1, above
which the strong mutation condition is satisfied.

mutation will continue to provide a sufficient, but not necessary, condition for

polymorphism.

4. Discussion

I have characterized conditions under which we can anticipate the behavior of

the Moran process will be mis-characterized by stochastic stability, and where

long term diversity will persist. But should we expect these conditions to obtain

in nature? If, indeed, the strong mutation condition were never to be satisfied,

then we might comfortably rely on stochastic stability analysis without fear of it

leading us astray. To see if this is so, we can survey representative population

sizes, mutation rates, and intensities of selection from relevant real-world evolving

populations.

Considering the canonical case of E. coli bacteria, we have that the per-site mu-

tation rates are typically of the order of 10−4 mutations per allele per replication

(Tenaillon et al. 2016). That is, an expected 1 out of 5, 000 bacteria produced

carry at least one mutation at a locus of interest. Typical bacterial popula-

tions, however, are of the order of 106 − 108. This yields a mutation strength of

η(N+2) ≈ 20, 000. That is, there will be an average of twenty thousand mutations

per population per generation. This is deep into the territory of strong mutation.

Moreover, the population sizes and mutations rates of many bacteria are compa-

rable (Drake et al. 1998). Bacterial populations, it seems, will exhibit population

sizes and mutation rates that suggest their long run evolutionary behavior will

typically be at odds with the predictions of stochastic stability.
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Humans, on other hand, exhibit per-allele mutation rates ranging from 10−5 to

10−10 (Drake et al. 1998). Throughout much of our evolutionary history, H. sapi-

ens subsisted in hunter-gatherer groups averaging 50 to 150 individuals (Bowles

and Gintis 2011). Hence, human biological evolution will typically not satisfy

strong mutation. The same will be true of many complex organisms, such as

mammals (Kumar and Subramanian 2002).

However, in the case of cultural evolution, we expect mutation rates—or noise

in the transmission of behavior via social learning and imitation—to be potentially

much higher (Boyd and Richerson 1985). Taking the example of humans, for a

group of 100 individuals, an innovation or error rate in behavior transmission of

just over 10% would satisfy strong mutation. Given that the Moran process is

often used to model processes of cultural evolution, it will be important to know

when an evolutionary process satisfies the strong mutation condition.

We should note that the relationship between strong mutation and persistent

polymorphism is not guaranteed to hold in other game structures. We can expect

the analysis will vary for extensive-form games, with more players and strategies,

and with the introduction of social or spatial structure, an so on. But it is

reasonable to imagine that qualitatively similar conditions may hold for other

classes of games. The question as to the limits of the agreement of the dynamics

for the case of strong mutation provides an interesting topic for further study.

5. Conclusion

The puzzle of the divergence between the predictions of the replicator dynam-

ics and the Moran process finds its resolution in identifying a shortcoming of

stochastic stability analysis. The cause of mis-prediction by stochastic stability is

the assumption of vanishing mutation. Polymorphism, which cannot be stochas-

tically stable, can be the most probable long run outcome of the Moran process.

I have shown that, under a range of values of population size, mutation rate,

and intensity of selection, the Moran process leads to polymorphisms which domi-

nate the long run behavior of the process. My results show that anti-coordination

games, and games containing anti-coordination subgames, can exhibit this behav-

ior for a broad range of conditions. For the 2 × 2 anti-coordination games con-

sidered here, ‘strong mutation’ provides a sufficient condition for mis-prediction

by stochastic stability analysis of the long run behavior of the Moran process.

Moreover, in the presence of strong mutation, the Moran process will typically
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spend most of its time near the specific polymorphic state that is asymptotically

stable under replicator dynamics.

We have also seen that strong mutation will be satisfied by a range of real-

world evolutionary processes. This is particularly true when population sizes are

large, such as with bacterial colonies, and when mutation or noise rates are high,

as is typical in the transmission of behavior in models of cultural evolution. In

such cases, we can anticipate that the behavior of the Moran process will be mis-

characterized by stochastic stability, and will realign with the predictions of the

replicator dynamics.

The upshots of our analysis are that we can characterize the conditions under

which an evolutionary process described by the Moran process (1) will sustain

long run diversity, (2) realign with the predictions of the replicator dynamics,

and (3) should not be analyzed using stochastic stability. Our moral is that,

when we anticipate attracting polymorphic equilibria—that is, when a population

interaction structure is characterized by anti-coordination—stochastic stability

may be an unreliable predictor of even the long term behavior of evolution. In such

cases, analysis should proceed by computing the stationary distribution explicitly

using representative values of population size, mutation rate, and intensity of

selection. When such an approach is not feasible, simulation methods must suffice.

In mathematical modeling, we must attend to the idealizations not only in the

models themselves but also within the techniques with which those models are

analyzed.

Mathematical Appendix

For the following proofs, we consider a game under the Moran process with

population size N ∈ N, mutation rate η ∈ (0, 1/2), and intensity of selection

w ∈ [0, 1], characterized by any 2×2 payoff matrix A = [ a bc d ] where a, b, c, d > 0,22

payoff functions fi and gi, and transition matrix Pi,j over the finite state space

χ = {0, 1, . . . , N}. This yields the ergodic process {XN,η,w
t }.

Let the fitness of each type at a particular intensity of selection be denoted

fw ≡ f |w, gw ≡ g|w. Similarly, for transition probabilities, Pw ≡ P |w, and

stationary distributions µw ≡ µ|w. We will omit the state subscript i, when there

is no risk of confusion.
22Note that the stipulation of positive payoffs is required as positive fitness values are needed

for the Moran process to be well-defined.
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Proof of Lemma 1. We want to show that, in the absence of selection, the peak of

the stationary distribution is a polymorphic state if, and only if, strong mutation

η(N + 2) > 1 holds.

Since {XN,η,w
t } is an ergodic process when η > 0, we are guaranteed that it has

a unique stationary distribution µ = 〈µ0, . . . , µN〉. Further, since we are consid-

ering a 2-strategy game, we know that µ satisfies the detailed balance condition

µiPi,i−1 = µi−1Pi−1,i (Sandholm 2009, Ch.12). From this, it follows that µi > µi−1

just in case Pi,i−1 < Pi−1,i. That is, a state i has greater mass in the stationary

distribution than its preceding state i − 1 just in case the transition probability

from i to i− 1 is less than the transition probability from i− 1 to i.

Set intensity of selection to zero w = 0, giving f 0 = g0 = 1. From these fitnesses

we determine the relevant transition probabilities.

Pi,i−1 =
i (N − i+ η(2i−N))

N2

Pi,i+1 =
(N − i) (i+ η(N − 2i))

N2

Pi−1,i =
(N − i− 1) (i− 1 + η(N − 2i− 2))

N2

Now, we find the conditions under which Pi,i−1 < Pi−1,i and Pi,i−1 > Pi−1,i in

terms of i, N , and η. This will tell us when the mass of states in the stationary

distribution is increasing, and when it is decreasing. Unpacking the inequality

Pi,i−1 < Pi−1,i, we get

i (N − i+ η(2i−N))

N2
<

(N − i− 1) (i− 1 + η(N − 2i− 2))

N2

which, with some algebra, yields

(1− η(N + 2)) (N − 2i+ 1) < 0. (∗)

We make the necessary restrictions, 2 ≤ N and 1 ≤ i ≤ N , and denote the term

on the left hand side of the inequality (∗) by h. We see that, when η(N + 2) > 1,

i < N+1
2

implies h < 0 and i > N+1
2

implies h > 0. Whereas, when η(N + 2) < 1,

i < N+1
2

implies h > 0 and i > N+1
2

implies h < 0.

That is, when strong mutation obtains, the mass µi of a state i in the stationary

distribution is greater than that of its preceding state i − 1 over the first half of

the state space i < N+1
2

, and less than that of its preceding state over the second

half of the state space i > N+1
2

. Thus, the stationary distribution µ must exhibit

a unique mode exactly at (or, when N is even, at the states directly adjacent to)
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the center of the state space i = N+1
2

. And when strong mutation does not obtain,

the relation between the mass of adjacent states are precisely reversed, and the

stationary distribution must exhibit two modes, one at each of the monomorphic

states i = 0 and i = N .

Thus, in the absence of selection, strong mutation is necessary and sufficient

for the mode of the stationary distribution to be a polymorphic state, and any

polymorphic mode will be at the midpoint of the state space. �

To tackle our theorem, first we prove some helpful lemmas.

Lemma 2. All else being equal, increasing intensity of selection exaggerates se-

lection in favor of the fitter type. That is, if w < w′, then fw > gw just in

case

ifw

ifw + (N − i)gw
<

ifw
′

ifw′ + (N − i)gw′
and

(N − i)gw

ifw + (N − i)gw
>

(N − i)gw′

ifw′ + (N − i)gw′
.

Proof. Consider two versions of the same process, {XN,η,w
t } and {XN,η,w′

t }, dif-

fering only in that the latter has greater intensity of selection, w < w′. Sup-

pose fwi > gwi for some i ∈ χ. Then fw − gw = wk and fw
′ − gw

′
= w′k

where k = (a(i − 1) + (b(N − i))) − (ci + d(N − i − 1))/(N − 1). Hence
fw−gw
fw′−gw′ = wk

w′k
= w

w′
< 1. We now have that 0 < fw − gw < fw

′ − gw
′
, and

so fw

gw
< fw

′

gw′
. We turn to the selection terms of our transition probabilities, and

observe that the following inequalities are equivalent.

fw

gw
<
fw
′

gw′

i

N − i
fw

gw
<

i

N − i
fw
′

gw′

ifw(N − i)gw′ < ifw
′
(N − i)gw

ifw(N − i)gw′ + (ifw · ifw′) < ifw
′
(N − i)gw + (ifw · ifw′)

ifw((N − i)gw′ + ifw
′
) < ifw

′
((N − i)gw + ifw)

ifw

ifw + (N − i)gw
<

ifw
′

ifw′ + (N − i)gw′
.

By similar reasoning, the following are equivalent

fw

gw
<
fw
′

gw′
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(N − i)gw′

ifw′ + (N − i)gw′
<

(N − i)gw

ifw + (N − i)gw
,

as required. �

Lemma 3. All else being equal, increasing intensity of selection exaggerates tran-

sition probabilities in favor of the fitter type. That is, if w < w′, then fw > gw

just in case

Pw
i,i+1 < Pw′

i,i+1 and Pw
i,i−1 > Pw′

i,i−1.

Proof. Denote A ≡ ifw

ifw+(N−i)gw , A′ ≡ ifw
′

ifw′+(N−i)gw′ , B ≡
(N−i)gw

ifw+(N−i)gw , and B′ ≡
(N−i)gw′

ifw′+(N−i)gw′ . Suppose w < w′, and fwi > gwi for some i ∈ χ. From Lemma 2, we

have that fw > gw just in case A < A′ and B > B′. We will make use of the fact

that B = 1 − A and B′ = 1 − A′. Let η < 1/2. Then the following inequalities

are equivalent.

A < A′

A(1− 2η) + η < A′(1− 2η) + η

(1− η)A+ η(1− A) < (1− η)A′ + η(1− A′)

(1− η)A+ ηB < (1− η)A′ + ηB′

(1− η)
N − i
N

A+ η
N − i
N

B < (1− η)
N − i
N

A′ + η
N − i
N

B′

Pw
i,i+1 < Pw′

i,i+1.

By similar reasoning, the following inequalities are equivalent.

B > B′

(1− η)
i

N
B + η

i

N
A > (1− η)

i

N
B′ + η

i

N
A′

Pw
i,i−1 > Pw′

i,i−1,

as required. �

Proof of Theorem 1. Let all else be as before, except our 2 × 2 symmetric game

is now characterized by anti-coordination payoffs a < c, b > d, with the extra

condition required for finite games that b− d > a−d
N

> a− c.
From Lemma 1, we have that, in the absence of selection w = 0, strong mutation

η(N + 2) > 1 is necessary and sufficient for µi−1 < µi for i ≤ bN+1
2
c and µi−1 > µi

for i > dN+1
2
e.
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For nonzero intensity of selection w > 0, we will show that fw > f 0 and

gw < g0 for some range of states before a polymorphic critical point i∗. As we will

show, it follows that Pw
i−1,i > P 0

i−1,i and Pw
i,i−1 < P 0

i,i−1 which in turn implies that
Pw
i−1,i

Pw
i,i−1

>
P 0
i−1,i

P 0
i,i−1

> 1. From the detailed balance conditions, this yields µi−1 < µi

when i ≤ bi∗c. Similarly, we will find that
Pw
i−1,i

Pw
i,i−1

<
P 0
i−1,i

P 0
i,i−1

< 1, and hence µi−1 < µi

after the critical point, when i > di∗e. This will conclude the proof.

Let w > 0. First, we find our critical point i∗. Recall the fitness functions for

each type

fwi = 1− w + w
a(i− 1) + b(N − i)

N − 1
and gwi = 1− w + w

ci+ d(N − i− 1)

N − 1
.

To find the critical point, we solve for when each type is fitter than the other.

fw − gw > 0

a(i− 1) + b(N − i)− ci− d(N − i− 1) > 0

i(a− b− c+ d) +N(b− d) + (d− a) > 0

i <
N(b− d) + (d− a)

b+ c− a− d

Hence, fw > gw just in case i < i∗ = N(b−d)+(d−a)
b+c−a−d . Note that we can confirm that

our interior critical point i∗ is indeed well-defined as b− d > a−d
N

> a− c implies

that 0 < N(b−d)+(d−a)
b+c−a−d < N .

From Lemma 1, we know that, whenever the strong mutation condition is satis-

fied, the mass of stationary distribution of the process in the absence of selection

µ0
i is increasing over the first half of the state space i < N+1

2
, and decreasing over

the second half i > N+1
2

.

From Lemma 3, it follows from w > 0 that fw > gw implies P 0
i,i+1 < Pw

i,i+1 and

P 0
i,i−1 < Pw

i,i−1, which obtains for i < i∗, and fw < gw implies P 0
i,i+1 > Pw

i,i+1 and

P 0
i,i−1 > Pw

i,i−1, which obtains for i > i∗. Hence, when fw > gw and µ0
i > µ0

i−1, we

have that
Pw
i−1,i

Pw
i,i−1

>
P 0
i−1,i

P 0
i,i−1

> 1. And, when fw < gw and µ0
i < µ0

i−1, we have that

Pw
i−1,i

Pw
i,i−1

<
P 0
i−1,i

P 0
i,i−1

< 1.

From this, and the detailed balance conditions, we know that µw must be

increasing for i ≤ min{bi∗c, bN+1
2
c}, and decreasing for i > max{di∗e, dN+1

2
e}.

Thus, we have that the stationary distribution µw must find it maximum value at

a polymorphic state somewhere in a state between i∗ =
b−d+( d−a

N
)

b+c−a−d and N+1
2

. �
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Proof of Corollary 1. Consider an anti-coordination game under the Moran pro-

cess, as before. Suppose the strong mutation condition η(N + 2) > 1 is satisfied,

and consider two intensities of selection w,w′ where 0 < w < w′ ≤ 1. Then,

for every population state prior to the critical point i∗ =
d−b+(a−d

N
)

d−c−b+a we know that

fw > gw and fw
′
> gw

′
. By lemma 3, w < w′ implies that Pw

i,i−1 > Pw′
i,i−1

and Pw
i−1,i < Pw′

i−1,i. So
Pi,i−1

Pw
i−1,i

>
Pw′
i,i−1

Pw′
i−1,i

which gives us, from the detailed balance

conditions, that
µwi
µwi−1

<
µw
′

i

µw
′

i−1

.

This means that the increase in mass (µi − µi−1) in every state states prior to

the critical point i∗ is greater (though, of course, it may be still be negative for

some states between i∗ and N+1
2

) for µw
′

than for µw. It is easy to see that the

inverse inequalities obtain for states after the critical point i∗, and so the rate of

decrease in mass is greater for µw
′

than for µw for i > i∗.

By the conservation of mass of the stationary distribution,
∑

i µi = 1, if the rate

of increase (of mass) for every state of a distribution µw
′

is greater than another

µw to the left of a critical point i < i∗ and the rate of decrease for every state of

µw
′

is greater than for µw to the right of that critical point i∗ > i, then µw
′

must

place greater mass than µw on the state(s) nearest the critical point. Hence, the

mass of the state(s) nearest the critical point i∗ = N(b−d)+(d−a)
b+c−a−d is increasing in

intensity of selection. �
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