
Abstract

The replicator dynamics and Moran process represent the main deterministic 
and stochastic models employed in evolutionary game theory. However, there 
are conditions under which their predictions disagree. I demonstrate that the 
disagreement between their predictions is caused by a standard technique 
used in the analysis of the Moran process—stochastic stability analysis. My 
investigation reveals problems for stochastic stability analysis in a broad class 
of games: anti-coordination games, and games containing anti-coordination 
subgames. I characterize the conditions—in terms of population sizes, muta-
tion rates, and intensities of selection—under which stochastic stability will 
mispredict the long run behavior of the Moran process, and demonstrate a 
novel domain of agreement between the two dynamics.

tldr: For a brief overview, follow the red text.

the Puzzle
Observation: Under certain conditions, the canonical replicator dynamics 
and Moran process models can yield contradictory predictions as to the prob-
able outcomes of evolutionary processes.

Q: Why should this be puzzling? 
A: Because the two models are intimately connected—the replicator dynamics 

provides the average behavior of the Moran process for large populations 
over long but finite durations[15].

an Example
of Disagreement Between the two Dynamics

Take the following simple, symmetric anti-coordination game: 

Assume in both models: large populations; the absence of mutation; and 
infinite horizon play.

The replicator dynamics predicts: evolution will deliver the population to 
the polymorphic state x=1/2.

Whereas the Moran process predicts: evolution will deliver the population, 
with equal probability, to one of the monomorphic states x=0 or x=1.

What is a moral certainty in one model is an impossibility in the other.

the Answer to the Puzzle 
& Cause of the Disagreement

Spoiler: The problem lies in the standard technique of stochastic stability anal-
ysis. In particular, it lies in the idealizations of vanishing mutation and weak 
selection employed in making the derivation of stochastic stability tractable. 

Under conditions I will characterize, these idealizations lead to the mispredic-
tion of homogeneity by stochastic stability analysis, when long run diversity is 
to be expected.

But, to understand the solution, we need to get an understanding of our dy-
namics and how we derive predictions from them.

The replicator dynamics is the first and most impor-
tant model in evolutionary game theory[17]. This is due 
to the fact that it allows us to consider the qualitative 
behavior of selection unperturbed by the complicating 
factors of drift, mutation, recombination, and so on. 

The leading idea behind the replica-
tor dynamics is that types that are 
more fit than the population average 
fitness grow in proportion, and types 
that are less fit than average shrink 
in proportion. 
This can be described by a system of differential equa-
tions

ẋi = xi [u(i, x) – u(x,x)],  i = 1,2

where ẋi denotes the rate of change of the population 
proportion of type i, xi denotes the population pro-
portion of type i, u(i, x) denotes the expected fitness 
of type i from interacting with the population x, and 
u(x,x) denotes the population average fitness.

The plausible outcomes of an evolutionary process de-
scribed by the replicator dynamics are typically taken 
to be the asymptotically stable states of the system[15]. 
These are the fixed points of the system—where the 
rate of change of all types is zero—that also have non-
empty basins of attraction, and are stable under small 
perturbations in population proproportions.

The standard stochastic model in evolutionary game 
theory, the frequency-dependent Moran process[10], de-
parts from the simplicity of the replicator dynamic to 
introduce stochasticity, finite population sizes, and drift.

The Moran process is a birth-death 
process in which, for each time step, 
two individuals are chosen: one for 
reproduction and the other for elimi-
nation. 
The individual chosen for death is selected uniformly at 
random from the population, while the individual cho-
sen for birth is chosen probabilitically as determined by 
the relative expected payoffs of the two types.

Formally, we define the Moran process with population 
size N and mutation rate η  as a Markov process {XN,η} 
over the finite state space χ={x ɛX :Nx ɛZN} of possible 
compositions of the population, and with transition 
probabilities between states given by

which composes a tri-diagonal matrix. The fitness of 
each type, A and B, are given as functions, fi and gi, of 
the number i of A-types in the population.

A stochastically stable state then is the (typically unique) 
state in the stationary distribution that has positive mass 
after we have taken the limit as the mutation rate ap-
proach zero—i.e., upon assuming vanishing mutation.

Formally, a state i ɛXN is stochastically stable in the small 
mutation limit if                [16].

Typically, questions about stochastic stability can be an-
swered by using particular well-chosen graphs, obviating 
the need to compute the stationary distribution.[24]

But we can do better. We can in-
vestigate the stationary distrbution 
directly, and relax the idealizing as-
sumptions of stochastic stability to 
explore a broader range of behaviors. 

Conclusion
Upshots: My analysis gives the conditions under which the evolutionary 
systems described by the Moran process (1) should not be analyzed using 
stochastic stability analysis, and (2) will sustain diversity and realign with 
the predictions of the replicator dynamics, even in infinite horizon play. In 
normal science, we learn to use the correct model and method of analysis 
when the appropriate conditions obtain.

Motivation
& Connection to the Literature

Q: Why does this matter?
A: Because the use of stochastic stability analysis is ubiquitious.

Those that have employed stochastic stability to analyze the behavior of the Moran 
process include: 

Darong (2010), Fudenberg et al (2006), Imhof et al (2006), Nowak (2009, 2007, 
2006), Ohtsuki et al (2007), Pitchaimani & Rajaji (2016), Sandholm (2010), 
Taylor et al (2004), Trauelsen et al (2007), Trauelsen & Hauert (2009), and 
Young (2015, 2001, 1998, 1993). 

This list can read like a a who’s-who of evolutionary game theory. Extraordinary game 
theorists have used stochastic stability analysis to explain the processes of cultural and 
biological evolution. Stochastic stability is an important tool in both theoretical and ap-
plied work, and understanding its limitations is important.
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Results
1 Long Run Persistence of Diversity in the Moran Process

When we relax the idealizing assumptions of stochastic 
stability, we can see that—for a significant range of muta-
tion rates, population sizes, and intensities of selection— 

even the long run behavior of the Mo-
ran process will qualitatively diverge 
from the predictions yielded by sto-
chastic stability analysis.
In particular, in the class of anti-coordination games, 
polymorphic population states can retain positive mass in 
the stationary disturbution. This is shown both in deriva-
tions of the stationary distribution (Figure 2) for various 
parameterizations, and in computational simulations of 
the process (Figure 1).

Thus stochastic stability analysis can 
mispredict homogeneity, when long 
run diversity is to be expected. 
But under what conditions should we expect such mispre-
diction? And should we expect these conditions to obtain 
in real-world target systems? 

The Answer to the former question is given by the result 
in the next section, and the answer to the latter question is 
“sometimes, yes”. An examination of the literature reveals 
that many traits of interest in model organisms such as 
E. coli, C. elegans, and drosophila will exhibit the popula-
tion sizes, mutation rates, and selection intensities that will 
make stochastic stability ill-suited to their analysis[7][8][9][13]. 
In more complex organisms, however, smaller population 
sizes mean that the conditions will typically not obtain.

(MP-RD harmony for strong 
mutation) For most 2×2 symmetric 
normal form anticoordination games, 
in the presence of strong mutation[20] 
ηN > 1, and strong selection w = 1, 
if a state i is asymptotically stable 
under the replicator dynamics, then 
it is near the peak of the stationary 
distribution μ of the Moran process.
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2 A Novel Domain of Agreement Between the Models
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Our result is that we can characterize the domain under which stochastic sta-
bility mispredicts the behavior of the Moran process. Interestingly, this also 
provides a novel domain for which the behavior of the Moran process can be 
shown to realign with the predictions of the replicator dynamics.

Stochastic stability, introduced to 
game theory by Foster & Young[22][23], 
aims to pick out the most probable 
outcome of a stochastic process.
The stationary distribution captures both the propor-
tion of time the process will spend at each of the states 
in the state space, and where we may expect to locate 
the process in the limit of time.

Formally, a probability distribution μ ɛRχ is a stationary 
distribution of the irreducible Markov process {XN,η} if

That is, taking the product of the stationary distribu-
tion and the matrix of transition probabilities simply 
returns the stationary distribution.

FIGURE 2: Stationary Distributions with Varying Population Sizes and Mutation Rates

FIGURE 3: Conditions for the Persistence of Interior Equilibria

FIGURE 1: Single Population Simulations of the Moran Process


