Two-Dimensional Classification of

3x3 Symmetric Games

Under Replicator Dynamics

All information from:

Immanuel M. Bomze’s “Lotka-Volterra equation and replicator dynamics: A two-dimensional classification” (1983)

and “Lotka-Volterra equation and replicator dynamics: New issues in classification” (1995)

R eplicator dynamics (RD) were introduced
by Taylor and Jonker (1978) to model evo-
lution of behaviour in intraspecific conflicts un-
der random pairwise interaction in a large, ideally
infinite population. It is used for modeling many
biological processes including the evolution of
animal behaviour, selection in population genet-

ics, and prebiotic evolution.

RD formalizes the idea that the growth rates
Z,/x; of relative frequency z; of the /" behaviour

pattern (z =1,...,n) is equal to the (dis)advantage
¢;* dr—z *dx = ZJ A~ ij T L

measured by incremental fitness relative to the
average performance within the population in
state x = [z,,...,x,]. Here a; denotes incremental
individual fitness attributed to an z-individual
when encountering a j-individual, and 4 = [a,] 1s
the resulting fitness matrix. A dot " denotes de-

rivative w.r.t. time ¢.

This infographic presents the case of n = 3 be-
haviour patterns yielding the system of cubic dif-

terential equations
I, = Zj[aij — Zk x,fakj];]-, 1=1,2,3 (RD)

operating on the state space S=8, where for gen-

eral n
S"={x=[x,...,x,]: 2,20, for all 4 Zixl:l}

denotes the standard simplex in z-dimensional

Euclidean space.
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The complete list of possible phase portraits un-
der the replicator dynamics is presented bellow,
containing 49 qualitatively different cases up to
flow reversal: 19 robust ones and 30 non-robust.
[proof in Bomze (1983, 1985)].

Here, for a phase portrait to be robust means that
it is invariant under sufficiently small perturba-

tions of fitness parameters.

Given our classification, we can see how the game
theoretic solution concept of evolutionarily stable
sets (ES sets) [introduced by Thomas (1985)]
fairs in capturing the asymptotic behaviour under

RD of this class of games.

Formally, a set of states P is said to be an ES set
tff for every pe P we have

zedp <peAp
reAr <peAz,

for all x € S", and

ifrx¢g Pwithzedp=peAdp

ES sets are the set-valued counterpart to ES
states p in the sense that p is an ES state in the
sense of Maynard Smith (1974) if, and only if, the
singleton {p} is an ES set.

A systematic investigation of the flows under RD
shows that not every subset consisting of neutral-
ly stable states is an ES set. Furthermore, there

are attracting sets of fixed points which are not
ES sets.

Specifically, we list that under matrix A and RD:
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(a) PP has ES sets with non-singleton components:
[21]; —[24]; —[29]; and [47].

(b) PP has attracting sets (or singletons) that are not ES:
[5]: P={p:p =k} is attractive but no ES set, since
no peP is neutrally stable; [9], [15]: p=["5, 5, /5] is
no ES state, but globally attracting; [ 12]: this is Zee-
man's (1981) counterexample; [26]: P={p:p =0} is
attractive, consists of NSSs, but is no ES set; -[30]:
P={p :p = 0} 1s attractive, but no ES set, since it
contains no NSSs except [ 1, 0, O].

(c) PP has NS that do not belong to IZS sets:[18], [19],
—[20]: every p with =0 is NS, but there is no ES
set, since there is not asymptotically stable set; —[ 18],
—[19],[20], [27]: as 18 but with p instread of p,; [22],
—[23], [28], [33]: every p with p=0 and p>0is NS,
but there is no ES set, since there is no asymptoti-
cally stable set; —[22], [23], —[28], -[33]: as [22] but
with p_instead of p ; —[80]: see (b).

(d) PP has Lyapunov stable states occur that do not
belong to ES sets: [3], (—)[28], (—)[38]: p=["2, Y2, 0]
is Lyapunov stable, but is not NS; [13]: as with [3]
but with p=[%, %, %]; [5], [9], [12], [15]: see (b);
[6]: all pwith p =72 and p> "4 are Lyapunov stable,
but neither of these states is NS; [48]: all pwith
p,=p,> 0 are Lyapunov stable, but only those with
73 <p <72 are also NS.

The notation (=)[k] means that PP [k] and also

PP —[k] obtained by flow reversal from [k] belong
to this class.
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Sources are represented by open dots (); sinks by full
dots @; centers by dashed dots ¢ ; and saddles by their
insets and outsets (stable and unstable manifolds). In
the robust flows, denoted by R, every orbit not specified
flows from a source to a sink (except [17], where any
non-constant orbit approaches any point on the edge
infinitely often). In all other cases, some representative
orbits are drawn.
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